Ensemble Methods as a Defense to Adversarial Perturbations Against Deep Neural Networks

نویسندگان

  • Thilo Strauss
  • Markus Hanselmann
  • Andrej Junginger
  • Holger Ulmer
چکیده

Deep learning has become the state of the art approach in many machine learning problems such as classi€cation. It has recently been shown that deep learning is highly vulnerable to adversarial perturbations. Taking the camera systems of self-driving cars as an example, small adversarial perturbations can cause the system to make errors in important tasks, such as classifying trac signs or detecting pedestrians. Hence, in order to use deep learning without safety concerns a proper defense strategy is required. We propose to use ensemble methods as a defense strategy against adversarial perturbations. We €nd that an aŠack leading one model to misclassify does not imply the same for other networks performing the same task. Œis makes ensemble methods an aŠractive defense strategy against adversarial aŠacks. We empirically show for the MNIST and the CIFAR-10 data sets that ensemble methods not only improve the accuracy of neural networks on test data but also increase their robustness against adversarial perturbations.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Defense-gan: Protecting Classifiers against Adversarial Attacks Using Generative Models

In recent years, deep neural network approaches have been widely adopted for machine learning tasks, including classification. However, they were shown to be vulnerable to adversarial perturbations: carefully crafted small perturbations can cause misclassification of legitimate images. We propose Defense-GAN, a new framework leveraging the expressive capability of generative models to defend de...

متن کامل

Sparsity-based Defense against Adversarial Attacks on Linear Classifiers

Deep neural networks represent the state of the art in machine learning in a growing number of fields, including vision, speech and natural language processing. However, recent work raises important questions about the robustness of such architectures, by showing that it is possible to induce classification errors through tiny, almost imperceptible, perturbations. Vulnerability to such “adversa...

متن کامل

Spatially Transformed Adversarial Examples

Recent studies show that widely used deep neural networks (DNNs) are vulnerable to carefully crafted adversarial examples. Many advanced algorithms have been proposed to generate adversarial examples by leveraging the Lp distance for penalizing perturbations. Researchers have explored different defense methods to defend against such adversarial attacks. While the effectiveness of Lp distance as...

متن کامل

Generalizable Adversarial Examples Detection Based on Bi-model Decision Mismatch

Deep neural networks (DNNs) have shown phenomenal success in a wide range of applications. However, recent studies have discovered that they are vulnerable to Adversarial Examples, i.e., original samples with added subtle perturbations. Such perturbations are often too small and imperceptible to humans, yet they can easily fool the neural networks. Few defense techniques against adversarial exa...

متن کامل

Adversarial Defense based on Structure-to-Signal Autoencoders

Adversarial attack methods have demonstrated the fragility of deep neural networks. Their imperceptible perturbations are frequently able fool classifiers into potentially dangerous misclassifications. We propose a novel way to interpret adversarial perturbations in terms of the effective input signal that classifiers actually use. Based on this, we apply specially trained autoencoders, referre...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1709.03423  شماره 

صفحات  -

تاریخ انتشار 2017